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Abstract In perturbation theory we study the matching in four dimensions between the
linear sigma model in the large mass limit and the renormalized nonlinear sigma model in
the recently proposed flat connection formalism. We consider both the chiral limit and the
strong coupling limit of the linear sigma model. Our formalism extends to Green functions
with an arbitrary number of pion legs, at one loop level, on the basis of the hierarchy as an
efficient unifying principle that governs both limits. While the chiral limit is straightforward,
the matching in the strong coupling limit requires careful use of the normalization conditions
of the linear theory, in order to exploit the functional equation and the complete set of local
solutions of its linearized form.

1 Introduction

The consistent formulation of the nonlinear sigma model as a finite theory by means of the
subtraction scheme based on the local functional equation [1–3] allows us to pose the ques-
tion of which relation exists between the nonlinear and the linear sigma model in the large
mass limit. We emphasize that in our approach both theories are finite (i.e. all divergences
have been removed).

In dealing with the large mass limit we encounter two scenarios. One is the chiral limit
where all momenta are small w.r.t. the vacuum expectation value (v.e.v.) v, the only mass
scale. Technically we have to perform an asymptotic expansion in 1/v of the linear sigma
model in the form

P (·,1/v) ln(v) + Q(·,1/v) (1)
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where P,Q are polynomials in 1/v. At one loop we find that the leading terms match with
the nonlinear sigma model. The second scenario is given by the limit of strong coupling λ.
In this latter case the momenta are not constrained to be small w.r.t. the scale v, moreover
all the divergent terms in λ have to be removed before taking the limit. The matching with
the nonlinear sigma model is again based on the leading terms, but the procedure is more
complex. In particular it shows that the use of the strong coupling limit as a definition of the
nonlinear sigma model [4, 5] leads to a whole ensemble of intricacies related to the power
law behavior in λ of the v.e.v. and of the wave function renormalization constant of the pion
fields.

The asymptotic expansion in both scenarios is carried out by taking the large mass limit in
the Feynman integrals by using Smirnov’s technique [8–10]. The two scenarios differentiate
in the use of a mass scale factor present in the dimensional subtraction procedure.

In this paper we address the question of the large m limit for the linear sigma model on
the basis of symmetry properties associated to a local version of chiral transformations. This
is implemented by two important technical points. First we notice that Γ̃ (the functional one
particle irreducible w.r.t. the pions, but only connected w.r.t. the sigma field) obeys the same
equation as the 1PI functional ΓNL of the nonlinear model derived from the local chiral
transformations. Thus Γ̃ is the right quantity where to evaluate the asymptotic expansion
and to impose the matching conditions. We find it convenient to impose the same sponta-
neous symmetry breaking v.e.v. and the same on-shell conditions for the two point function
of the pions in the two models. Second we use the hierarchical structure of the functional
equation in order to study the matching. This means that only the ancestor amplitudes need
to be studied (those with external legs given by the currents and order parameter operator).
Moreover the matching is much easier since the number of superficially divergent ancestor
amplitudes is finite (at variance with the amplitudes involving also the pion field). On super-
ficially convergent amplitudes the large mass limit presents no difficulties, reproducing the
corresponding amplitudes of the nonlinear sigma model.

In the tree level approximation the linear sigma model in the limit m → ∞ is known
to reproduce the nonlinear theory at the first non-vanishing order in the 1/m expansion
[4–7]. The case of the tree level approximation is automatically dealt with by the hierarchy
approach.

In the strong coupling limit particular care will be devoted in order to guarantee that the
grading of the perturbative expansion of the functional equation in the number of loops is
compatible with the asymptotic expansion in 1/m. The removal of the corrections to the
tadpole and to the residuum of the pion is required to ensure this compatibility. This in turn
allows to use the local invariant solutions of the linearized functional equation both for ΓNL

and Γ̃ . By using the hierarchical principle it is then straightforward to perform the fine-
tuning necessary for the matching in such a way that the validity of the functional equation
is maintained through all descendant lines of the Feynman amplitudes, in particular those
involving only the Goldstone fields.

This strategy will be applied here at the one loop level and, due to its generality, it could
provide an effective way to study the matching also at higher loops.

The main results can be summarized by the following points. (i) In the chiral limit the
leading terms of Γ̃ in the linear sigma model yield the corresponding amplitudes of ΓNL.
(ii) In the limit of strong coupling: (ii.a) for amplitudes which are superficially convergent
in the nonlinear sigma model the limit of large mass shows perfect matching with the linear
model; (ii.b) for the amplitude Γ̃JJ with only two external background connections Jμ

a the
matching can be achieved by a fine-tuning after the subtraction of the renormalization parts
of the v.e.v. and of the pion residuum in the linear sigma model; (ii.c) for all the other
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ancestor amplitudes Γ̃K0K0 , Γ̃K0JJ , Γ̃JJJ , Γ̃JJJJ which are superficially divergent in the
nonlinear sigma model the matching is possible provided a fine-tuning is performed by
using the local invariant solutions of the linearized functional equation.

We stress once more that this is possible only if the compatibility of the grading in the
linearized functional equation is guaranteed by removing the renormalization parts in the
v.e.v. and in the residuum of the pion fields. This renormalization removes terms in λ4 lnλ,
λ4 and λ2 which can dangerously conspire with subleading terms of the classical action
resulting in jeopardizing the hierarchy principle.

The paper is organized as follows. In Sect. 2 we formulate the linear sigma model in
order to implement the local chiral symmetry in the background field formalism. In Sect. 3
we derive the local Ward identity in the linear sigma model for the 1-PI vertex functional
and for Γ̃ which is 1-PI only w.r.t. the pions fields. In Sect. 4 we consider the tree level case
as a warm-up for a consistent use of the hierarchy approach by which the pion amplitudes
are derived from those involving only the currents and the order parameter.

In Sect. 5 we discuss the matching in the one loop approximation. In Sect. 5.1 we fix the
renormalization of the linear sigma model and we notice the necessity to introduce a coun-
terterm involving the field strength tensor for the background connection Jμ

a . In Sect. 5.2 we
comment on the large mass expansion and discuss the different regimes of the chiral limit
and the strong coupling limit. In Sect. 5.3 we show how to explicitly construct Γ̃ (1) and pro-
vide the general framework for the evaluation of the ancestor amplitudes at the leading order
in the large mass expansion. In Sect. 5.4 we give the general proof of the correspondence in
the one loop case. We summarize the results for the chiral limit in Sect. 6 and for the strong
coupling limit Sect. 7. The comparison with some previous results published in the literature
is carried out in Sect. 7.1. Finally conclusions are given in Sect. 8.

Appendix 1 gives the Feynman rules for the linear sigma model in the presence of a
background connection. In Appendix 2 we give a resumé of the most relevant formulas. In
Appendix 3 we apply the large mass expansion due to Smirnov in order to compute the
leading and the next-to-leading term in the asymptotic expansion of the four pion amplitude
and verify the cancellations of non-local terms, which happens at these orders as predicted
by the hierarchy. In Appendix 4 we perform the detailed computations of the leading order
in the large mass expansion for the superficially divergent ancestor amplitudes which are
needed in the general proof outlined in Sect. 5.4. In Appendix 5 we report the classical
action of the nonlinear sigma model in the flat connection formalism and collect the local
invariant solutions of the linearized functional equation which are needed for the large mass
expansion in the one-loop approximation.

2 The Linear Sigma Model

The classical action of the linear sigma model can be written as

Γ
(0)
L [φ] =

∫
dDx

(
∂μΦ†∂μΦ − λ2v4−D

(
Φ†Φ − v2

D

2

)2)
, (2)

where Φ is the two-component complex vector field

Φ(x) = 1√
2

(
iφ1(x) + φ2(x)

φ0(x) − iφ3(x)

)
. (3)



Int J Theor Phys (2007) 46: 2560–2590 2563

We use a single D-dimensional mass scale vD = vD/2−1. λ is dimensionless. Γ
(0)
L [φ] in

(2) is invariant under the global chiral SU(2)L × SU(2)R symmetry

Φ ′ = ULΦU
†
R with UL ∈ SU(2)L, UR ∈ SU(2)R. (4)

The invariance under infinitesimal global SU(2)L transformations

δLΦ(x) = iδαb

τb

2
Φ(x) (5)

is translated into the following Ward identity obeyed by Γ
(0)
L :

∫
dDx

((
1

2
φ0δab + 1

2
εabcφc

)
δΓ

(0)
L

δφb

− 1

2
φa

δΓ
(0)
L

δφ0

)
= 0. (6)

Equation (6) is well-known and it is usually implemented in the literature in order to discuss
the relationship between the renormalization constants and the existence of the Goldstone
bosons.

We remark that it is possible to couple in the classical action the Noether current associ-
ated with the infinitesimal left global transformations

Lμ
a = i

2
(Φ†(x)τa∂

μΦ(x) − ∂μΦ†(x)τaΦ(x))

= −φ0(x)∂μφa(x) + ∂μφ0(x)φa(x) − εabc∂
μφb(x)φc(x) (7)

to the external source Jμa without violating power-counting renormalizability. This yields a
global Ward identity in the presence of the source Jμ

a

∫
dDx

((
1

2
φ0δab + 1

2
εabcφc

)
δΓ

(0)
L [φ,J ]
δφb

− 1

2
φa

δΓ
(0)
L [φ,J ]
δφ0

− εabcJ
μ

b

δΓ
(0)
L [φ,J ]
δJ

μ
c

)
= 0 (8)

for the action

Γ
(0)
L [φ,J ] = Γ

(0)
L [φ] +

∫
dDxJμaL

μ
a . (9)

By using the fact that Γ
(0)
L [φ,J ]|J=0 = Γ

(0)
L [φ] we see that for Jμa = 0, (8) reduces to (6).

3 Local Ward Identity

The global Ward identity in (8) does not fix the pion amplitudes in terms of the amplitudes
involving only the sigma field and Jμ

a and therefore it does not exhibit a hierarchy. This
can be remedied by upgrading the global symmetry to a local one in a way compatible with
power-counting renormalizability. This can be achieved by considering the action

Γ (0) =
∫

dDx

(
DμΦ†DμΦ − λ2v4−D

(
Φ†Φ − v2

D

2

)2)
, (10)
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where Dμ denotes the covariant derivative w.r.t. Jμa :

DμΦ = ∂μΦ − iJμa

τa

2
Φ. (11)

In this formalism Jμa is a background gauge connection. In order to set up the pertur-
bative expansion of the theory we expand around the minimum constant configuration
φ̄0 = vD, φ̄a = 0. Thus the field φ0 acquires a non-vanishing v.e.v. vD and we correspond-
ingly shift φ0 by setting

φ0(x) = vD + σ(x). (12)

The tree level Feynman rules derived from Γ (0) are collected in Appendix 1.
Γ (0) is invariant under the local infinitesimal transformations

δφa = 1

2
(vD + σ)δαa + 1

2
εabcφbδαc, δσ = −1

2
φaδαa,

δJμa(x) = ∂μδαa(x) + εabcJμb(x)δαc(x).

(13)

The local Ward identity fulfilled by Γ (0) is1

(
1

2
(vD + σ)δab + 1

2
εabcφc

)
Γ

(0)
φb

− 1

2
φaΓ

(0)
σ − ∂μΓ

(0)

J
μ
a

− εabcJ
μ

b Γ
(0)

J
μ
c

= 0. (14)

By adopting the normalization condition on the tadpole

Γσ |σ=φa=J
μ
a =0 = 0 (15)

the position of the minimum of the potential does not renormalize. Equation (14) becomes
for the full quantum vertex functional

(
1

2
(vD + σ)δab + 1

2
εabcφc

)
Γφb

− 1

2
φaΓσ − ∂μΓJ

μ
a

− εabcJ
μ

b ΓJ
μ
c

= 0. (16)

In our approach the matching between the linear and the nonlinear sigma model is studied by
means of the local chiral transformations. In the nonlinear sigma model the φ0 field becomes
a composite operator, being subject to the nonlinear constraint

φ2
0 + φ2

a = v2
D. (17)

This suggests to introduce for the linear sigma model the functional Γ̃ which is 1-PI only
w.r.t. the pion fields. For that purpose we need to perform the Legendre transform of the
connected generating functional for the linear sigma model W [Ka,K0, J

μ
a ] only w.r.t. Ka

(the sources of the three independent fields φa):

Γ̃ [φa,K0, J
μ

b ] = W [Ka,K0, J
μ

b ] −
∫

dDxKaφa

= Γ [φa,φ0, J
μ

b ] +
∫

dDxK0φ0 (18)

1A subscript denotes functional differentiation with respect to the argument.
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with the Legendre transform condition

δΓ

δφ0
= −K0 (19)

(i.e. K0 is the source for the unshifted field φ0).
At this stage we can derive a local functional equation for Γ̃ . From (16) we derive the

local functional equation obeyed by W [Ka,K0, J
μ

b ]

−1

2

δW

δK0
Ka − 1

2
εabc

δW

δKc

Kb + 1

2

δW

δKa

K0

− ∂μ δW

δJ
μ
a

− εabcJ
μ

b

δW

δJ
μ
c

= 0. (20)

By using the fact that

δΓ̃

δK0
= δW

δK0
(21)

(since we do not perform a Legendre transform w.r.t. K0) we can obtain from (20) the
following local functional equation for Γ̃

+1

2

δΓ̃

δK0

δΓ̃

δφa

+ 1

2
εabcφc

δΓ̃

δφb

− 1

2
φaK0

− ∂μ δΓ̃

δJ
μ
a

− εabcJ
μ

b

δΓ̃

δJ
μ
c

= 0. (22)

We remark that the equation for Γ̃ is nonlinear, due to the appearance of the bilinear term
in the first line of (22) (while the original local functional Ward identity for the linear sigma
model is linear). Moreover by using (15) and (18) we get

δΓ̃

δK0

∣∣∣∣
φa=K0=J

μ
a =0

= vD. (23)

This condition will be imposed also on the nonlinear sigma model, thus fixing the only
dimensional parameter of the theory. We remark that (22) is the same as the functional
equation obeyed by the nonlinear sigma model in the flat connection formalism [1–3] and
therefore we conclude that the use of Γ̃ will be the correct way to study the matching
between the two models. In this way the matching of the limit of the linear sigma model
with the nonlinear one is performed by using the same functional equation and the same
boundary condition in (23).

4 Tree Level Results

We apply our strategy for the matching in D = 4 in the tree level approximation. In this
case one can either compute Γ̃ (0) by exploiting the hierarchy or directly by means of (18).
In the first case we observe that the classical action of the nonlinear sigma model Γ

(0)
NL (see

(121) in Appendix 5) obeys the same functional equation (22) as Γ̃ (0). Therefore by using
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the hierarchy the problem of the matching can be traced back to the issue of the matching
of the ancestor amplitudes involving the insertions of the constraint of the nonlinear sigma
model and of the SU(2) flat connection

Fμ
a = 2

v2
(φ0∂

μφa − ∂μφ0φa + εabc∂
μφbφc). (24)

In the matching procedure one has thus to properly normalize the background connection
through

J
μ

a,NL = −v2

4
Jμ

a , (25)

since J
μ

a,NL couples in Γ
(0)
NL to the flat connection Fμa :

Γ
(0)
NL = v2

8

∫
d4x(Fμ

a − Jμ
a )2 +

∫
d4xK0φ0

=
∫

d4x

(
v2

8
F 2 + Fμ

a Jμa,NL + 2

v2
J 2

NL

)
+

∫
d4xK0φ0. (26)

A straightforward calculation in the limit of large m for Γ̃ (0) yields in momentum space

Γ̃
(0)
K0

(0) = v,

(
− 4

v2

)2

Γ̃
(0)

J
μ1
a1 (−p)J

μ2
a2 (p)

= 4

v2
δa1a2gμ1μ2 .

(27)

These amplitudes coincide with the corresponding ones of the nonlinear sigma model (see
Appendix 5), while all the remaining ancestor amplitudes are suppressed both in the chiral
and in the strong coupling limit (they vanish in the nonlinear sigma model). Since the an-
cestor amplitudes match at the first non-vanishing order, the matching at the same order for
amplitudes involving at least one pion field then follows by the hierarchy.

In the second approach we resolve the Legendre transform w.r.t. φ0

δΓ (0)

δφ0
= −K0, (28)

yielding

−�φ0 − Jμ
a ∂μφa − 1

2
∂J aφa + 1

4
J 2φ0 − λ2φ0(φ

2
0 + φ2

a − v2) = −K0. (29)

The above equation has to be solved for φ0 in the sense of formal power series in Jμ
a ,K0, φj

and their derivatives. In the limit λ → ∞ the leading contribution comes from the non-trivial
solution of

φ0(φ
2
0 + φ2

a − v2) = 0. (30)

The same happens in the chiral limit. Thus we find

φ0

v
=

(
1 − φ2

a

v2

)1/2

+ O(1/m2), (31)
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i.e. we recover the constraint of the nonlinear sigma model.
Then one finds that (by using the properly normalized source J

μ

a,NL in (25)) Γ̃ (0) coin-
cides in the first non-vanishing order both in the chiral and in the strong coupling limit with
the classical action of the nonlinear sigma model Γ

(0)
NL:

Γ̃ (0) = Γ
(0)
NL + O(1/λ) (strong coupling limit),

Γ̃ (0) = Γ
(0)
NL + O(1/v) (chiral limit).

(32)

5 Matching by the Hierarchy (One Loop)

In this section we move to the study of the matching in the one loop approximation. A pos-
sible way to analyze the correspondence is to evaluate directly Γ̃ (1) according to (18) and
verify the matching at the level of pion amplitudes [4–7].

However, as we have already mentioned many times, it is more profitable to evaluate the
behavior of ancestor amplitudes and from them derive possibly the amplitudes involving
pion fields through the hierarchy. This strategy requires a careful analysis of the renormal-
ization conditions.

5.1 Renormalization of the Linear Sigma Model (One Loop)

The renormalization of the linear sigma model is performed within Dimensional Regular-
ization. The integrals in the Feynman amplitudes in D dimensions are correctly normalized
by using the parameter vD . The local Ward identity (16) restricts the one loop counterterms
to be of the form

Γ
(1)
ct =

∫
dDx

[
δZ(DμΦ)†(DμΦ) − δt

(
Φ†Φ − v2

D

2

)

− δλ

(
Φ†Φ − v2

D

2

)2

+ δJ FμνaF
μν
a

]
(33)

where Fμν
a is the field strength of the background connection Jμ

a :

Fμν
a = ∂μJ ν

a − ∂νJ μ
a + εabcJ

μ

b J ν
c . (34)

We notice the appearance in (33) of a counterterm involving the field strength of J a
μ . How-

ever this term does not contribute to the pion amplitudes through the descendant lines of the
hierarchy just by direct computation (it is gauge-invariant and therefore it disappears in the
expression within (22)).

The matching of the two models through the coincidence of the v.e.v. requires the intro-
duction of a counterterm for the tadpole as in (15). This fixes δt :

δt = 3λ2

(4π)2
m2

(
2

4 − D
+ 1 − γE + ln(4π) − ln

(
m2

v2

))
. (35)

By the above condition we are able to fix a common mass scale for both the linear and the
nonlinear sigma model according to (23) which at one loop gives

Γ̃
(1)
K0

= 0. (36)



2568 Int J Theor Phys (2007) 46: 2560–2590

We also require that the residuum of the pion is set equal to one, thus fixing δZ :

δZ = − λ2

(4π)2
. (37)

We remark that if one does not remove the power law dependence in λ and v of Γ (1)
σ and Γ

(1)
JJ

by using the counterterms in (35) and (37) the suppressed terms in 1/λ or 1/v (according
to which limit is taken) entering in Γ̃ (0) (see (32)) would spoil through the bilinear terms
in (22) the compatibility between the large mass limit and the loop expansion. A similar
problem is also encountered in the direct evaluation of pion amplitudes by conventional
approaches discussed in Sect. 7.1.

In our strategy of using only ancestor amplitudes the condition on the residuum of the
pion can be translated in terms of Γ̃

(1)
JJ as follows:

lim
m2→∞

∂

∂m2
Γ̃

(1)
JJ = 0. (38)

The remaining counterterms are chosen according to Minimal Subtraction on the basis
of simplicity and elegance:

δλ = 12λ4

(4π)2

2

4 − D
,

δJ = 1

24(4π)2

2

4 − D
.

(39)

5.2 Large Mass Expansion

The expansion for large value of the parameters is performed by using the technique devised
by Smirnov [8–10] and it involves in principle only one parameter, the mass of the heavy
particle running inside the graph. However, if the graph is divergent at D = 4, then the pole
subtraction introduces a second mass which restores the correct dimensions of the Feynman
amplitudes. If this extra mass scale is kept fixed for m → ∞ we realize the strong coupling
limit; if instead this mass scale is identified with the v.e.v. we obtain the chiral limit. In both
cases the technical job is the same and consists in asymptotic expansion of the Feynman
amplitudes for large m.

In Appendix 4 we evaluate the asymptotic expansion of all the ancestor amplitudes of
the linear sigma model which develop a singular behavior in the limit m → ∞ and which
correspond to superficially divergent amplitudes of the nonlinear sigma model.

From the results of Appendix 4 one sees that in the chiral limit the correspondence with
the nonlinear sigma model is automatic if one keeps only the leading terms in lnv. In par-
ticular all graphs involving a virtual sigma field yield subleading contributions.

In the strong coupling limit the connected graphs containing the sigma field (�Γ̃ (1))
yield terms proportional to lnλ which have to be subtracted before taking the limit λ → ∞.

In performing this kind of calculations one finds a certain number of cancellations which
can be traced from the algebraic characterization of Γ̃ (1). In the next subsection we are
going to elaborate on this more general and formal approach which has the advantage of
being able to deal with the general case with any number of legs in the ancestor amplitudes.
On the account of the hierarchy that means that by this method we can take the limit of large
mass for any Feynman amplitude with arbitrary number of pion fields (one loop).
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5.3 Explicit Construction of Γ̃ (1)

At one loop it is possible to give an analytic construction of Γ̃ (1) by using Γ (1) and by
making use of the Legendre transform in (18). For that purpose we expand the solution of
(19) as

φ0 = φ
(0)

0 + φ
(1)

0 + · · · , (40)

where φ
(1)

0 stands for the one loop corrections to the solution of the classical equation of
motion in (29) and the dots denote terms of higher order in �. By substituting φ0 in (40) into
(18) and by keeping only terms up to order one in the loop expansion one finds

Γ̃ [φa,K0, Jaμ] = Γ (0)[φa,φ
(0)

0 , J ] +
∫

dDxK0φ
(0)

0 + Γ (1)[φa,φ
(0)

0 , J ]

+
∫

dDx

(
δΓ (0)[φa,φ

(0)

0 , J ]
δφ0

+ K0

)
φ

(1)

0 + · · ·

= Γ (0)[φa,φ
(0)

0 , J ] +
∫

dDxK0φ
(0)

0 + Γ (1)[φa,φ
(0)

0 , J ] + · · · (41)

where use has been made of (28). By (41) Γ̃ (1) can be obtained by substituting in the one
loop 1-PI vertex functional Γ (1) of the linear sigma model the solution of the classical
Legendre transform in (28):

Γ̃ (1)[φa,K0, Jaμ] = Γ (1)[φa,φ0, Jaμ]|
φ0=φ

(0)
0 (φa,K0,Jaμ)

. (42)

Γ̃ (1) obeys the linearized functional equation obtained by projecting (22) at one loop

+1

2

δΓ̃ (0)

δK0

δΓ̃ (1)

δφa

+ 1

2

δΓ̃ (1)

δK0

δΓ̃ (0)

δφa

+ 1

2
εabcφc

δΓ̃ (1)

δφb

− ∂μ δΓ̃ (1)

δJ
μ
a

− εabcJ
μ

b

δΓ̃ (1)

δJ
μ
c

= 0. (43)

Equation (43) suggests a different approach to the study of the matching than the direct
evaluation of the pion amplitudes. Since (43) implements a hierarchy principle, the coinci-
dence in the large mass limit of the ancestor amplitudes is sufficient to guarantee through
the hierarchy the coincidence (at the same order in the large mass expansion) of amplitudes
involving at least one pion.

According to (42) in order to derive the one loop ancestor amplitudes at the first non-
vanishing order in the large mass expansion one has to evaluate the renormalized 1-PI vertex
functional Γ (1)[0, σ, J ] of the linear sigma model at φa = 0 (no external pion legs) and then
substitute into it the solution of the Legendre transform in (29), again by keeping only those
terms non-vanishing at φa = 0. In the first order of the large m expansion the solution to
(29) can be truncated at order 1/λ2 (further terms yield suppressed contributions in the large
m expansion):

σ(x) = 1

8λ2v
J 2(x) + 1

2λ2v2
K0(x) + · · · . (44)
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5.4 General Proof of the Matching

In this subsection we exploit (42) in order to derive a general framework for the analysis of
the ancestor amplitudes in Γ̃ (1).

For that purpose we consider first the large mass limit of Γ (1)[0, σ, J ]. As can be seen
from the tree-level Feynman rules in Appendix 1, the degree in λ and v of the interaction ver-
tices only depends on the number of fields entering into the vertex (irrespective of whether
the fields are σ or φa).

As a consequence, the leading order in the large mass expansion for a superficially con-
vergent 1-PI amplitude in Γ (1)[0, σ, J ] is given by graphs with only massless internal lines
(light graphs). In fact any graph with superficial degree of divergence δ < 0 contributing to
such an amplitude and involving at least one massive virtual sigma field (heavy graph) is
suppressed by a factor mδ w.r.t. the light graphs.

For superficially divergent amplitudes the same conclusion holds in the chiral limit, as
can be checked by the explicit computations of the relevant amplitudes in Appendix 4 once
the normalization of the vector external source in (25) is taken into account.

On the contrary, in the strong coupling limit the dominant contribution to superficially
divergent amplitudes comes from the heavy graphs. The leading terms for large λ can
be computed by using the results of Appendix 4 and yield (the subscript H stands for
heavy):

Γ
(1)
H = 1

(4π)2
ln

(
m2

v2

)∫
d4x

(
−9λ4v2σ 2 − 1

4
λ2vJ 2

a σ + 1

24
(∂μJaν∂

μJ ν
a − ∂Ja∂Ja)

− 1

8
εabc∂μJaνJ

μ

b J ν
c − 1

96
(J 2

a J 2
b + 2JaμJ

μ

b JaνJ
ν
b ) + 3

64
J 2

a J 2
b

)
. (45)

On account of the replacement in (44) Γ
(1)
H gives rise through the Legendre transform in

(42) to logarithmically divergent terms in the ancestor amplitudes Γ̃
(1)
K0K0

, Γ̃
(1)
K0JJ , Γ̃

(1)
JJ , Γ̃

(1)
JJJ

and Γ̃
(1)
JJJJ . These amplitudes are in one-to-one correspondence with the one loop superfi-

cially divergent ancestor amplitudes of the nonlinear theory. The logarithmic divergences
in λ have to be removed in a symmetric way by making use of the invariants I1, . . . ,I7 in
(125) before the limit λ → ∞ is taken.

Once logarithmic divergences are removed, the finite parts generated by the heavy graphs
in the large λ expansion have finally to be matched by a finite fine-tuning by using the
invariants I1, . . . ,I7. In fact at one loop level the linearized equation (43) guarantees that
this is always a viable procedure compatible with allowed one-loop finite renormalizations
of the nonlinear sigma model.

The recursive fulfillment of the bilinear local functional equation (22) order by order in
the loop expansion is required in order to guarantee the locality of the symmetric coun-
terterms [11]. At order n > 1 the latter obey the inhomogeneous equation obtained by pro-
jecting the bilinear functional equation at order n in the loop expansion. The higher order
symmetric counterterms can be determined by using the algebraic methods based on the
Slavnov–Taylor (ST) parameterization of the symmetric effective action which were origi-
nally developed for the restoration of the ST identities in chiral gauge theories in the absence
of a symmetric regularization [9–14].

The fact that the subtraction of the divergent terms cannot be defined in a unique way
shows that the nonlinear sigma model cannot be uniquely defined as a limit of strong cou-
pling.
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In order to establish the matching with the nonlinear sigma model it remains to prove
that the light graphs in Γ (1)[0, σ, J ] do reproduce under the Legendre transform in (42) the
same ancestor amplitudes of the nonlinear theory (at the leading order). This result relies on
quite subtle cancellations implemented in Γ̃ (1) by the Legendre transform. In particular the
contributions generated by the quadrilinear vertex Γ

(0)
JJφφ (which is absent in the nonlinear

sigma model) are removed only once the Legendre transform is performed, as shown ex-
plicitly later on. Some examples of these cancellations have been pointed out in Appendix 4
(see (109), (113) and (117)).

Here we elucidate the general structure of the underlying cancellation mechanism.
The evaluation of the ancestor amplitudes in Γ̃ (1) at the required order is carried out by

properly normalizing the relevant light amplitudes in Γ (1)[0, σ, J ] with the help of the single
mass scale v and then by performing the replacement in (44) on the subtracted amplitudes.
Since in this process σ plays the rôle of an external background source, it is convenient to
derive an effective potential in such a way that the effects of the replacement are taken into
account directly at the level of the Feynman rules. One is then led to introduce the potential
V given by

V (φa;K0, J ) =
∫

dDx

(
1

2
Γ

(0)
σφa1 φa2

σφa1φa2 + 1

2
Γ

(0)

J
μ
a φa1 φa2

Jμ
a φa1φa2

+ 1

4
Γ

(0)

J
μ1
a1 J

μ2
a2 φb1 φb2

Jμ1
a1

Jμ2
a2

φb1φb2

)∣∣∣∣
σ= 1

8λ2v3−D/2 J 2+ 1
2λ2v2 K0

. (46)

Several comments are in order here. The interaction vertices between round brackets in (46)
are precisely those generating the light graphs in Γ (1)[0, σ, J ] (through contraction with the
pion propagators). Moreover it is important to notice that, as a consequence of the use of a
single mass scale v, the replacement for σ in (46) can be safely carried out in D dimensions.

Thus we can formally write

exp

(
i

�
Γ̃ (1)[K0, J ]

)
�� exp

(
i

�

∫
dDxV

(
�

i

δ

δKa

;K0, Jμa

))

× exp

(
− 1

2�

∫
dDxKa�abKb

)∣∣∣∣
Ka=0

, (47)

where �ab is the pion propagator

�ab = i

p2
δab. (48)

The equality in (47) holds at the leading order in the large mass expansion. The subscript
� states that one has to keep only terms of order � in the R.H.S. of (47). The amplitudes
generated according to (47) have to be properly normalized by using the single mass scale v

before subtracting the pole. Notice that since each interaction vertex in V contains two fields
φa , the one-loop connected graphs with external legs K0 and J are automatically 1-PI.

By substituting σ as displayed in (46) the effective potential V reads explicitly

V (φa;K0, J )

=
∫

dDx

(
1

4λ2v2
Γ

(0)
σφa1 φa2

K0φa1φa2 + 1

2
Γ

(0)

J
μ
a φa1 φa2

Jμ
a φa1φa2
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+
(

1

4
Γ

(0)

J
μ1
a1 J

μ2
a2 φb1 φb2

+ 1

16λ2v3−D/2
Γ

(0)
σφb1 φb2

gμ1μ2δa1a2

)
Jμ1

a1
Jμ2

a2
φb1φb2

)
. (49)

Since

Γ
(0)
σφa1 φa2

= −2λ2v3−D/2δa1a2 (50)

one gets
∫

dDx
1

4λ2v2
Γ

(0)
σφa1 φa2

K0φa1φa2 = −
∫

dDx
1

2vD

K0φ
2
a (51)

i.e. the same trilinear coupling K0φφ appearing in Γ
(0)
NL. The trilinear coupling Jφφ in (49)

coincides with the corresponding coupling in Γ
(0)
NL (once the source Jaμ is properly rescaled

as in (25)). Moreover

1

4
Γ

(0)

J
μ1
a1 J

μ2
a2 φb1 φb2

+ 1

16λ2v3−D/2
Γ

(0)
σφb1 φb2

gμ1μ2δa1a2 = 0 (52)

and therefore the quadrilinear coupling JJφφ in (49) vanishes.
Thus we see that the effective potential V coincides with the one of the nonlinear sigma

model. Since we use a single mass scale v for the normalization of both Γ̃ (1) and Γ
(1)
NL,

we can then state the coincidence of the one-loop convergent ancestor amplitudes (at the
leading order) in both theories. For the divergent ones, as discussed before, finite parts need
to be matched by a fine-tuning by using the invariants I1, . . . ,I7 since the subtraction of the
divergent parts is not uniquely defined.

This property implies that also the amplitudes involving at least one pion field, generated
through the descendant lines of the hierarchy, coincide at the leading order, thus establishing
the matching in full generality (one loop).

6 One Loop Chiral Limit

In the chiral limit at the leading order (logarithmic dependence on v and powers in 1/v) the
ancestor amplitudes of Γ̃ (1) coincide with those of the nonlinear theory. In fact after fixing
the v.e.v. of the order parameter by (35) and by using the normalization of the pole of the
φa fields imposed in (37) no further fine tuning is necessary in order to obtain the matching.
The correspondence with the nonlinear sigma model amplitudes is guaranteed provided that
one uses a single subtraction mass scale v.

According to the discussion of the previous section, the matching of the ancestor am-
plitudes is realized in a substantially different way depending on whether the amplitude is
superficially divergent or convergent. If the amplitude is convergent then the limit can be
performed in a straightforward way by expanding in 1/v and the coincidence of the two
models at the leading order is automatically fulfilled.

For divergent ancestor amplitudes the discussion is more involved. First of all we notice
that on the side of the linear sigma model the behavior in ln m2

v2 of the large mass expansion

of the heavy graphs �Γ̃ (1) (those of Γ̃ (1) which have no corresponding partner amplitudes
in Γ

(1)
NL) is a constant since m2 = 2λ2v2, as shown in Appendix 4. Thus at the one loop level

the contributions of the heavy superficially divergent amplitudes are of order zero w.r.t.
superficially divergent amplitudes of the nonlinear sigma model, which behave as lnv.
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However these finite terms are not relevant for the matching. The reason is due to the fact
that Γ̃ (1) satisfies the functional equation in the linearized form of (43) and therefore any
finite linear combination of local invariants I1, . . . ,I7 in (126) can be added to Γ

(1)
NL as an

allowed finite renormalization. This voids of any relevance the terms �Γ̃ (1).
Once more we point out that this kind of argument can be used only for the ancestor

amplitudes. In fact there are infinitely many divergent descendant amplitudes. The latter are
however related through the hierarchy to a finite number of ancestor amplitudes only.

Our results on the chiral limit of the linear sigma model reproduce those obtained in chiral
perturbation theory in Refs. [15, 16] once one uses the (one-loop) correspondence table
between chiral invariants and the invariants I1, . . . ,I7 of the linearized functional equation
given in [2].

However this agreement is presumably limited to the one-loop approximation. In our
opinion the use of the tree-level equations of motions in Refs. [15, 16] instead of the Legen-
dre transform from the vertex functional to the connected generating functional is only valid
at one loop. The extension of the latter method to higher orders is less straightforward since
higher orders (non-local) corrections to the tree-level equations of motion have to be taken
into account. In the one-loop approximation the use of the tree-level equations of motion is
very advantageous since it allows to perform the matching directly on the connected Green
functions of the linear theory, as is done in Refs. [15, 16].

7 One Loop λ → ∞ Limit

The strong coupling limit turns out to be more involved. The limit λ → ∞ is singular as it is
evident from the logarithmic dependence on λ of the functional Γ

(1)
H in (45). This residual

logarithmic dependence cannot be removed by a renormalization of the linear sigma model
(since the required counterterms violate the power-counting bounds) and therefore have
to be introduced as counterterms for the effective action Γ̃ (1) by means of the invariants
I1, . . . ,I7 in (125). This is in contrast with the divergent term proportional to λ2 in the two-
point function Γ̃

(1)
JJ , which can be removed by using the tadpole counterterm in (35) and the

kinetic counterterm in (37) introduced in order to fix the residuum of the φa propagator to
one. The removal procedure has to be consistent with the one loop local functional equation,
therefore we have expanded the lnλ terms as linear combinations of the complete basis given
by I1, . . . ,I7. By comparison with (45) and by taking into account (125) one finds

Γ̃ (1) = − 1

4(4π)2
ln

(
m2

v2

)[
−1

6
(I1 − I2) + 1

2
I3

+ 9

v4
I4 + 5

v2
I5 + 1

24
(I6 + 2I7) + 1

2
I6

]
+ O(λ0). (53)

Once the logarithmic divergences are removed, the finite parts generated by the heavy graphs
in the strong coupling limit have to be matched by using the invariants I1, . . . ,I7. The
coincidence of the ancestor amplitudes then guarantees through the hierarchy the matching
of the pion amplitudes.

As we have already said, the lack of uniqueness in the subtraction procedure reflects the
impossibility of uniquely defining the nonlinear sigma model as the strong coupling limit of
the linear model.

As an application of the hierarchy principle, we determine the behavior of the four point
pion function in the strong coupling limit. For that purpose one has to project (53) on the
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Fig. 1 Counterterm
contributions to the four point
function

monomials containing four pion fields. By using (125) one finds

Γ̃ (1)[φφφφ] = − 1

2(4π)2

lnλ

v4

[
8

3
(∂μφa∂

μφa∂νφb∂
νφb − ∂μφa∂νφa∂

μφb∂
νφb)

+ 9φa�φaφb�φb + 20φa�φa∂μφb∂
μφb

+ 26

3
∂μφa∂

μφa∂νφb∂
νφb + 4

3
∂μφa∂

μφb∂νφa∂
νφb

]
+ O(λ0). (54)

7.1 Comparison with Some Previous Results Present in the Literature

The comparison of the above result with previous published works, for instance Ref. [5], is
complicated by the fact that the conditions in (36) and (38) are not imposed on the linear
sigma model. The counterterms needed to restore these conditions (δt and δZ) have a λ2, λ4

and λ4 lnλ behavior. The power factors in λ might cause important changes in the four-pion
amplitudes. We comment here on the relevance of these changes.
Apparently the subtraction procedure used by Appelquist and Bernard [5] differs from ours
as can be seen from their radiative correction to the v.e.v.

− 3

32π2

m4

v
(ln(m2) − 1 + γE + lnπ). (55)

A consistent use of this counterterm together with the one in (37) in the relevant graphs
depicted in Fig. 1 shows that in the four-pion amplitudes the λ4 terms disappear, however the
λ2 and λ2 lnλ are non zero. These cancel exactly against the corresponding terms reported
in Ref. [5] and only lnλ terms are left over. The final result matches with (54), thus showing
that it is crucial to keep the v.e.v. of sigma and the residuum of the pion pole fixed in the
renormalization of the linear sigma model, if one takes the limit of strong coupling.

8 Conclusions

In this paper we have examined the matching between the linear sigma model and the non-
linear sigma model in D = 4 by using the symmetry properties based on the local chiral
transformations. By formulating the linear sigma model in terms of a background connec-
tion we have derived a linear local functional equation for the linear sigma model vertex
functional. In order to study the matching in the large m limit one has to consider amplitudes
which are 1-PI w.r.t. the pion fields but connected w.r.t. the sigma lines. These amplitudes
are collected in the generating functional Γ̃ . We have shown that a nonlinear local functional
equation for Γ̃ holds. This equation is of the same functional form as the one fulfilled by
the nonlinear sigma model vertex functional in the flat connection formalism.

By fixing a common mass scale for the linear and the nonlinear theory (the v.e.v. of the
order parameter) and by adopting the normalization condition on the residuum of the pions
(which ensures the compatibility between the large mass limit and the loop expansion at the
level of the functional equation) we have shown that the same hierarchical structure exists
both in the linear and the nonlinear sigma model.
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This allows us to derive the matching for any amplitude involving at least one pion once
the matching is verified at the level of ancestor amplitudes only (i.e. amplitudes involving
the insertions of the flat connection and of the constraint of the nonlinear sigma model).

This provides a common framework for the study of both the chiral limit and the strong
coupling limit.

In the first case we have shown in the one loop approximation that the matching is ful-
filled at the leading order (logarithmic dependence on v and powers in 1/v) provided that
the normalization conditions on the tadpole (fixing the mass scale) and on the residuum of
the pion are imposed on the linear side.

In the strong coupling limit we find that the limit λ → ∞ is logarithmically divergent
at one loop and thus the removal of these divergences have to be performed before the
limit is taken. The logarithmic divergences have to be subtracted symmetrically through the
invariant solutions of the linearized functional equation.

Once the logarithmic divergences are removed, the finite parts generated by the heavy
graphs in the strong coupling limit have to be matched by using the invariants I1, . . . ,I7 in
(125). The coincidence of the ancestor amplitudes then guarantees through the hierarchy the
matching of the descendant amplitudes involving at least one pion.

The lack of uniqueness of the subtraction procedure reflects the impossibility of uniquely
defining the nonlinear sigma model as the strong coupling limit of the linear model.

We remark that in the case of the strong coupling limit the hierarchy provides an efficient
way to control the logarithmic dependence of all one-loop amplitudes on the coupling con-
stant through the functional Γ

(1)
H given in (45). It might be expected that the strategy based

on the hierarchy principle could be helpful in studying the strong coupling limit also for dif-
ferent theories (like for instance the strong coupling limit of the Standard Model [17–23]).

Finally the generality of the approach based on the hierarchy principle gives some hope
that it could provide an effective strategy for the study of the matching between the linear
and the nonlinear sigma model in the large mass expansion also at higher loop orders by
preserving the unified treatment of both the chiral and the strong coupling limit.

Acknowledgements We thank Tom Appelquist and Juerg Gasser for useful comments.

Appendix 1 Feynman Rules for the Linear Sigma Model

The classical action Γ (0) in (10) reads in terms of the fields σ,φa

Γ (0) =
∫

dDx

(
1

2

(
∂νσ∂νσ − m2σ 2 + ∂νφa∂

νφa

)
− λm v2−D/2

√
2

(σ 3 + σφ2
a)

− λ2v4−D

4
(σ 4 + 2σ 2φ2

a + (φ2
a)

2)

+ Jμa(−(σ + vD)∂μφa + ∂μσφa − εabc∂
μφbφc)

+ J 2
μa

8
(σ 2 + 2vDσ + φ2

a) + v2
D

8
J 2

μa

)
. (56)

In the above equation we have introduced the mass parameter m = √
2λv. Γ (0) is invariant

under the local transformations

δφa = −1

2
(vD + σ)δαa + 1

2
εabcφbδαc, δσ = 1

2
φaδαa, (57)
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while the source Jμ
a transforms as a background connection

δJμ
a = ∂μδαa + εabcJ

μ

b δαc. (58)

The tree level Feynman rules can be directly read off from (56).

1. Propagators

• Pion propagator iΓ
(0)−1
φaφb

= i

p2 δab (Fig. 2(1))

• Sigma propagator iΓ (0)−1
σσ = i

p2−m2 (Fig. 2(2))

2. Trilinear couplings

• iΓ
(0)
φaφbσ = − 2iλm v2−D/2√

2
δab (Fig. 3(1))

• iΓ (0)
σσσ = − 6iλm v2−D/2√

2
(Fig. 3(2))

3. Quadrilinear couplings

• iΓ (0)
σσσσ = −6iλ2v4−D (Fig. 4(1))

• iΓ
(0)
φaφbσσ = −2iλ2v4−Dδab (Fig. 4(2))

• iΓ
(0)
φaφbφcφd

= −2iλ2v4−Dsabcd (Fig. 4(3)) where sabcd = δabδcd + δacδbd + δadδbc .

4. Composite operators

• iΓ
(0)

φaφbJ c
μ

= 1
2εabc(p1 + p2)

μ (Fig. 5(1))

• iΓ
(0)
φaσJμb

= 1
2δab(p1 + p2)

μ (Fig. 5(2))

• iΓ
(0)
φaJμb

= 1
2δabvDpμ (Fig. 5(3))

• iΓ
(0)
φaφbJμcJνd

= i
2 δabδcdg

μν (Fig. 5(4))

• iΓ
(0)
σσJμaJνb

= i
2 δabg

μν (Fig. 5(5))

Fig. 2 Free propagators

Fig. 3 Trilinear vertices

Fig. 4 Quadrilinear vertices
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Fig. 5 Composite operators
vertices

• iΓ
(0)
σJμaJνb

= i
2 vDδabg

μν (Fig. 5(6))

• iΓ
(0)
JμaJνb

= i
4 v2

Dδabg
μν (Fig. 5(7))

Appendix 2 Useful Formulas

In this appendix we list some useful formulas.

Massive Tadpoles

We set

Tn =
∫

dDq

(2π)D

1

(q2 − m2)n
= (−)ni

(4π)D/2

Γ (n − D/2)

Γ (n)
(m2)D/2−n. (59)

The following recursive relation is verified for Tn:

Tn = −
(

1 − D

2n − 2

)
m−2Tn−1. (60)

By properly normalizing Tn one finds for D → 4

v2−DT1 = i

(4π)2

m2

v2

(
2

4 − D
+ 1 − γE + ln(4π) − ln

(
m2

v2

))
, (61)

v4−DT2 = i

(4π)2

(
2

4 − D
− γE + ln(4π) − ln

(
m2

v2

))
. (62)

For n > 2 we have no more poles in D = 4. The straightforward limit gives

Tn = (−)ni

(4π)2

1

(n − 1)(n − 2)

1

m2(n−2)
. (63)

Partial Fractions Identities

I (r, l) =
∫

dDq

(2π)D

1

(q2)r (q2 − m2)l
= m−2(I (r − 1, l) − I (r, l − 1)). (64)
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Note that I (0, l) = Tl and that in dimensional regularization I (r,0) vanishes. By proceeding
recursively one finds

I (r, l) =
l−1∑
j=0

[
(−)j

(
r + j − 1

j

)
m−2(r+j)Tl−j

]
. (65)

Self-Energy Integrals

We collect here the relevant self-energy integrals.

B0(p
2;0,0) = v4−D

∫
dDq

(2π)D

1

q2(p + q)2

= i

(4π)2

(
2 − γE + ln(4π) − ln

(
−p2

v2

))
, (66)

B0(p
2;m,0) = v4−D

∫
dDq

(2π)D

1

(p + q)2(q2 − m2)

= i

(4π)2

(
1 − γE + ln(4π) − ln

(
m2

v2

)
+ f1

(
p2

m2

))
, (67)

B0(p
2;m,m) = v4−D

∫
dDq

(2π)D

1

(q2 − m2)[(q + p)2 − m2]

= i

(4π)2

(
−γE + ln(4π) − ln

(m2

v2

)
+ f2

(
p2

m2

))
, (68)

where the functions f1 and f2 are given by

f1

(
p2

m2

)
= −

∫ 1

0
dx ln

(
1 − p2

m2
(1 − x)

)
= p2

2m2

(
1 + p2

3m2
+ (p2)2

6m4

)
+ O(m−8) (69)

and

f2

(
p2

m2

)
= −

∫ 1

0
dx ln

(
1 − p2

m2
x(1 −x)

)
= p2

6m2

(
1 + p2

10m2
+ (p2)2

70m4

)
+O(m−8). (70)

Appendix 3 One Loop Four Pion Function at Order 1/m2

In this appendix we verify that the one loop four pion function Γ̃
(1)
φaφbφcφd

vanishes at order
1/m2. For that purpose we need to evaluate graphs which are 1-PI w.r.t. φ and reducible w.r.t.
the σ lines. This amounts to perform the Legendre transform of the 1-PI vertex functional
Γ (1) w.r.t. σ .

The 1-PI amplitudes of the linear sigma model which enter in this computation are
Γ

(1)
φaφbφcφd

, Γ
(1)
φiφj σ and Γ (1)

σσ . They respectively generate the graphs of type 1, 2 and 3 in
Fig. 6.
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Fig. 6 Four pion radiative
corrections

Fig. 7 1PI

In the previous figure we have not included any graph with the insertion of the massive
tadpole because these graphs are canceled by the counter-term δt in (35).

We decompose Γ̃
(1)
φaφbφcφd

according to the group tensors as follows:

Γ̃
(1)
φaφbφcφd

= δabδcdA + δacδbdB + δadδbcC + O(m−4). (71)

We evaluate here the coefficient A as a function of the external momenta and the parameters
of the theory (B and C are obtained by permutations). Fig. 6 suggests to further decompose
A according to

A =
3∑

i=1

Ai (72)

where Ai denotes the contribution to A from the graphs of type i in Fig. 6.
We begin by evaluating A1. The relevant 1PI graphs are shown in Fig. 7. The first two

graphs of Fig. 7 can be computed exactly and yield after Minimal Subtraction

A1,1 = 22λ4

(4π)2

(
2 − γE + ln(4π) − ln

(
m2

v2

))

− 14λ4

(4π)2
ln

(
− s

m2

)
− 4λ4

(4π)2
ln

(
− t

m2

)
− 4λ4

(4π)2
ln

(
− u

m2

)
(73)

(where s = (pa +pb)
2, t = (pa +pc)

2, u = (pa +pd)
2 are the usual Mandelstam variables)

and

A1,2 = 2λ4

(4π)2

(
−γE + ln(4π) − ln

(
m2

v2

)
+ s

6m2

)
. (74)

The remaining graphs of Fig. 7 are UV convergent. Their direct evaluation for general val-
ues of the kinematical invariants is not straightforward. However since we are interested in
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a precise kinematical regime (i.e. the one in which the physical mass parameter m is greater
than all the others kinematical invariants built with external momenta) we can expand the
amplitudes in the large m limit by making use of a subgraphs asymptotic expansion tech-
nique due to Smirnov [8–10].

Here follows a short outline of this technique. Given a UV convergent Feynman graph G
the expansion procedure consists of two steps:

• Take the whole graph and Taylor-expand it w.r.t. the external momenta around pext = 0.
This may introduce spurious IR divergences that have to be dimensionally regularized.

• Take the subgraphs that contain all heavy internal lines (i.e. the massive sigma propaga-
tors) and are 1PI w.r.t. light lines (they can be disconnected) and Taylor-expand them w.r.t.
the external momenta and the momenta flowing in the heavy lines around pext = 0 and
qheavy = 0. This may introduce spurious UV divergences that have to be dimensionally
regularized.

It can be proven that for any order in the expansion and for any graph the spurious diver-
gences exactly cancel each other. The remaining terms provide the large mass expansion of
the amplitude G.

By applying this technique we find that graph (3) of Fig. 7 yields

A1,3 = − 4λ4

(4π)2

(
2 + 5s + 3t + 3u

12m2

)
. (75)

The contribution from graph (4) in Fig. 7 is

A1,4 = 4λ4

(4π)2

[
2

(
ln

(
− s

m2

)
+ ln

(
− t

m2

)
+ ln

(
− u

m2

)
− 3

)

+ 5

4

s + t + u

m2
+ −s + t + u

2m2
ln

(
− s

m2

)

+ s − t + u

2m2
ln

(
− t

m2

)
+ s + t − u

2m2
ln

(
− u

m2

)]
. (76)

Finally we discuss the Feynman integral associated to graph (5) of Fig 7:

A1,5 = − 4λ4

(4π)2

[
ln

(
− t

m2

)
+ ln

(
− u

m2

)
+ 5s

3m2
+ t + u

m2

+ s − t + u

2m2

(
ln

(
− t

m2

)
− 1

)
+ s + t − u

2m2

(
ln

(
− u

m2

)
− 1

)]
. (77)

By collecting together the results obtained in (73), (74) and (75–77) we find the contribution
of the 1PI graphs:

A1 = 24λ4

(4π)2

(
1

2
− γE + ln(4π) − ln

(
m2

v2

)
− 1

4
ln

(
− s

m2

))
+ λ4

(4π)2

s

m2

+ 4λ4

(4π)2

−s + t + u

2m2
ln

(
− s

m2

)
. (78)

Now we consider the graphs of type 2 (displayed in Fig. 8). Graph (1) gives
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Fig. 8 One sigma line

A2,1 = − 20λ4

(4π)2

(
1 + s

m2

)(
2 + γE − ln(4π) − ln

(
m2

v2

)
− ln

(
− s

m2

))
. (79)

Graph (2) gives

A2,2 = − 12λ4

(4π)2

(
1 + s

m2

)(
γE − ln(4π) − ln

(
m2

v2

))
− 2λ4

(4π)2

s

m2
. (80)

The contribution from graph (3) in Fig. 8 is

A2,3 = − 16λ4

(4π)2

(
1 + s

m2

)(
γE − ln(4π) − ln

(
m2

v2

))
− 2λ4

(4π)2

s + t + u

m2
. (81)

Graph (4) gives

A2,4 = 24λ4

(4π)2

(
1 + s

m2

)
+ λ4

(4π)2

5s + 3t + 3u

m2
. (82)

Finally graph (5) gives

A2,5 = − 8λ4

(4π)2

(
1 + s

m2

)(
ln

(
− s

m2

)
− 1

)

− 2λ4

(4π)2

(
3s + t + u

2m2
+ −s + t + u

m2
ln

(
− s

m2

))
. (83)

By collecting together the results obtained in (79–83) we find the contribution of the graphs
of type 2:

A2 = − 48λ4

(4π)2

(
1

2
− γE + ln(4π) − ln

(
m2

v2

)
− 1

4
ln

(
− s

m2

))

− 48λ4

(4π)2

s

m2

(
13

24
− γE + ln(4π) − ln

(
m2

v2

)
− 1

4
ln

(
− s

m2

))

− 2λ4

(π)2

−s + t + u

m2
ln

(
− s

m2

)
. (84)
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Fig. 9 Two sigma lines

Finally we consider the graphs of type 3 (displayed in Fig. 9). Graph (1) gives

A3,1 = 6λ4

(4π)2

(
1 + 2s

m2

)(
2 + γE − ln(4π) − ln

(
m2

v2

)
− ln

(
− s

m2

))
. (85)

The contribution from graph (2) in Fig. 9 is

A3,2 = 18λ4

(4π)2

(
1 + 2s

m2

)(
γE − ln(4π) − ln

(
m2

v2

))
+ 3λ4

(4π)2

s

m2
. (86)

Finally the contribution from graph (3), controlled by the wave function counterterm δZ ,
yields

2λ2δZ

s

m2

(
1 − s

m2

)−2

= − 2λ4

(4π)2

s

m2
+ O(m−4). (87)

By collecting together the results obtained in (85–87) we find the contribution of the
graphs of type 3:

A3 = 24λ4

(4π)2

(
1

2
− γE + ln(4π) − ln

(
m2

v2

)
− 1

4
ln

(
− s

m2

))

+ 48λ4

(4π)2

s

m2

(
27

48
− γE + ln(4π) − ln

(
m2

v2

)
− 1

4
ln

(
− s

m2

))

− 2λ4

(4π)2

s

m2
. (88)

By summing the contributions in (78), (84) and (88) it can be checked that the terms of
order 1/m2 exactly cancel. Therefore the first non-vanishing term for the four-point function
Γ̃

(1)
φaφbφcφd

is of order 1/m4.
Several comments are in order here. First we remark that the non-local contributions

containing logs of the momenta cancel each other among (78), (84) and (88). On the other
hand, if one does not impose the renormalization condition on the residue of the pion in (37)
the four-point function Γ̃

(1)
φaφbφcφd

would contain a term of order 1/m2

2λ4

(4π)2

s

m2
(89)

which diverges in the strong coupling limit and goes like 1/v2 in the chiral limit (in contrast
with the corresponding leading terms of the nonlinear model which are of the type 1/v4 lnv),
thus spoiling in both cases the matching with the nonlinear theory.
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Appendix 4 Superficially Divergent Ancestor Amplitudes

In this appendix we evaluate diagrammatically the contributions �Γ̃
(1)
K0K0

, �Γ̃
(1)
JJ , �Γ̃

(1)
K0JJ ,

�Γ̃
(1)
JJJ and �Γ̃

(1)
JJJJ to the superficially divergent ancestor amplitudes at the first order in

the large mass expansion from graphs with at least one sigma line.
The subset of the graphs which are 1-PI w.r.t. the sigma lines allows us to evaluate the

contribution to the amplitudes Γ (1)
σσ ,Γ

(1)
σJJ , Γ

(1)
JJ ,Γ

(1)
JJJ and Γ

(1)
JJJJ from graphs with massive

internal lines in the strong coupling limit, thus fixing Γ
(1)
H in (45).

• �Γ̃
(1)
K0K0

The relevant graphs come from the radiative corrections to the sigma propagator. At one
loop level there are two of them (Fig. 10).

Graph (1) coincides exactly with the corresponding graph of the nonlinear sigma model
and thus need not be computed. Graph (2) gives

�Γ̃
(1)
K0K0

(p) = − 9

2(4π)2v2

(
−γE + ln(4π) − ln

(
m2

v2

))
. (90)

The contribution of graph (2) to the two-point sigma function in Γ
(1)
H is

Γ
(1)
H,σσ = −18λ4v2

(4π)2
ln

m2

v2
. (91)

• �Γ̃
(1)
JJ

We now move to the graphs involving two external currents. Graph (1) in Fig. 11 coin-
cides exactly with the corresponding graph of the nonlinear sigma model. Graph (2) gives

�Γ̃
(1)

J
μ
a J ν

b
,2
(p) =

[
λ2v2

2(4π)2

(
3

2
− γE + ln(4π) − ln

(
m2

v2

))
gμν

+ 1

12(4π)2

(
4

3
− γE + ln(4π) − ln

(
m2

v2

))
pμpν

− 1

12(4π)2

(
5

6
− γE + ln(4π) − ln

(
m2

v2

))
p2gμν

]
δab. (92)

The contribution of graph (3) is

�Γ̃
(1)

J
μ
a J ν

b
,3
(p) = − λ2v2

2(4π)2

(
1 − γE + ln(4π) − ln

(
m2

v2

))
gμνδab. (93)

Fig. 10 Sigma propagator
radiative corrections

Fig. 11 Two currents
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Fig. 12 Two currents and one
K0 (1-PI)

Finally we need to take into account the contribution from the counterterm proportional to
δZ in (33):

Γ̃
(1)

J
μ
a J ν

b
,ct

(p) = − λ2v2

4(4π)2
gμνδab. (94)

Thus

�Γ̃
(1)

J
μ
a J ν

b

(p) = 1

12(4π)2

[(
4

3
− γE + ln(4π) − ln

(
m2

v2

))
pμpν

−
(

5

6
− γE + ln(4π) − ln

(
m2

v2

))
p2gμν

]
δab. (95)

Moreover

Γ
(1)

H,J
μ
a J ν

b

= − 1

12(4π)2
ln

(
m2

v2

)
(pμpν − gμνp

2). (96)

• �Γ̃
(1)
K0JJ

Now we consider the graphs with two external currents and one K0. First we compute
the set of graphs in Fig. 12. Graph (1) gives

�Γ̃
(1)

K0J
μ
a J ν

b
,1
(p,p1,p2) = − 3

4(4π)2v

(
2 − γE + ln(4π) − ln

(
−p2

v2

))
gμνδab. (97)

Graph (2) gives

�Γ̃
(1)

K0J
μ
a J ν

b
,2
(p,p1,p2) = − 3

4(4π)2v

(
−γE + ln(4π) − ln

(
m2

v2

))
gμνδab. (98)

Graph (3) has not to be computed since it coincides with the corresponding one of the
nonlinear sigma model. Graph (4) gives

�Γ̃
(1)

K0J
μ
a J ν

b
,4
(p,p1,p2) = 1

4(4π)2v

(
3

2
− γE + ln(4π) − ln

(
m2

v2

))
gμνδab. (99)

Finally graph (5) gives

�Γ̃
(1)

K0J
μ
a J ν

b
,5
(p,p1,p2) = 3

4(4π)2v

(
1

2
− γE + ln(4π) − ln

(
m2

v2

))
gμνδab. (100)

There are also graphs which are not 1-PI, depicted in Fig. 13. Graph (6) gives

�Γ̃
(1)

K0J
μ
a J ν

b
,6
(p,p1,p2) = 3

4(4π)2v

(
2 − γE + ln(4π) − ln

(
−p2

v2

))
gμνδab. (101)
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Fig. 13 Two currents and one
K0 with one sigma line

Fig. 14 Three currents

Graph (7)

�Γ̃
(1)

K0J
μ
a J ν

b
,7
(p,p1,p2) = 9

4(4π)2v

(
−γE + ln(4π) − ln

(
m2

v2

))
gμνδab. (102)

Hence we obtain

�Γ̃
(1)

K0J
μ
a J ν

b

= 1

4(4π)2v

[
3 − 10γE + 10 ln(4π) − 10 ln

(
m2

v2

)]
gμνδab. (103)

The contribution to Γ
(1)
H is obtained by taking into account only the 1-PI contributions in

Fig. 12. Thus

Γ
(1)

H,σJa
μJb

ν
= − λ2v

2(4π)2
ln

(
m2

v2

)
gμνδab. (104)

• �Γ̃
(1)
JJJ

Now we consider the graphs with three external currents (Fig. 14). Graph 1 coincides
exactly with the corresponding Feynman graph of the nonlinear sigma model.

The contribution of the second graph is:

�Γ̃
(1)

J
μ
a J ν

b
J

ρ
c
(p1,p2,p3)

= − iεabc

8(4π)2

(
3

2
− γE + ln(4π) − ln

(
m2

v2

))

× [gμν(p1 − p2)ρ − gμρ(p1 − p3)ν + gνρ(p2 − p3)μ], (105)

and therefore

Γ
(1)

H,J
μ
a J ν

b
J

ρ
c
(p1,p2,p3)

= iεabc

8(4π)2
ln

(
m2

v2

)

× [gμν(p1 − p2)ρ − gμρ(p1 − p3)ν + gνρ(p2 − p3)μ]. (106)

• �Γ̃
(1)
JJJJ

Finally we consider the graphs with four external currents (Fig. 15).
Graph (1) coincides exactly with the corresponding graph of the nonlinear sigma model.
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Fig. 15 Four currents 1-PI

Graph (2) vanishes at leading order. Graph (3) gives

�Γ̃
(1)

J
μ1
a1 J

μ2
a2 J

μ3
a3 J

μ4
a4 ,3

(p1,p2,p3,p4)

= sa1a2a3a4

12(4π)2
g(μ1μ2gμ3μ4)

(
5

6
− γE + ln(4π) − ln

(
m2

v2

))
(107)

where

g(μ1μ2gμ3μ4) = gμ1μ2gμ3μ4 + gμ1μ3gμ2μ4 + gμ1μ4gμ2μ3 . (108)

Graph (4) gives

�Γ̃
(1)

J
μ1
a1 J

μ2
a2 J

μ3
a3 J

μ4
a4 ,4

(p1,p2,p3,p4)

= − 3

8(4π)2

[
gμ1μ2gμ3μ4δa1a2δa3a4

(
−2 + γE − ln(4π) + ln

(
− s

v2

))

+ gμ1μ3gμ2μ4δa1a3δa2a4

(
−2 + γE − ln(4π) + ln

(
− t

v2

))

+ gμ1μ4gμ2μ3δa1a4δa2a3

(
−2 + γE − ln(4π) + ln

(
− u

v2

))]
. (109)

Graph (5) gives

�Γ̃
(1)

J
μ1
a1 J

μ2
a2 J

μ3
a3 J

μ4
a4 ,5

(p1,p2,p3,p4)

= 1

8(4π)2

(
gμ1μ2gμ3μ4δa1a2δa3a4 + (1 ↔ 3)

(2 ↔ 4)
+ (1 ↔ 4)

(2 ↔ 3)

)

×
(

−γE + ln(4π) − ln

(
m2

v2

))
. (110)

At the leading order graph (6) cancels exactly against graph (11) of Fig. 16.
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Fig. 16 Four currents with one
sigma line

Graph (7) gives

�Γ̃
(1)

J
μ1
a1 J

μ2
a2 J

μ3
a3 J

μ4
a4 ,7

(p1,p2,p3,p4)

= − 1

4(4π)2

(
gμ1μ2gμ3μ4δa1a2δa3a4 + (1 ↔ 3)

(2 ↔ 4)
+ (1 ↔ 4)

(2 ↔ 3)

)

×
(

3

2
− γE + ln(4π) − ln

(
m2

v2

))
. (111)

Graph (8) gives

�Γ̃
(1)

J
μ1
a1 J

μ2
a2 J

μ3
a3 J

μ4
a4 ,8

(p1,p2,p3,p4)

= − 1

4(4π)2

(
gμ1μ2gμ3μ4δa1a2δa3a4 + (1 ↔ 3)

(2 ↔ 4)
+ (1 ↔ 4)

(2 ↔ 3)

)

×
(

1

2
− γE + ln(4π) − ln

(
m2

v2

))
. (112)

Now we move to the connected graphs with one sigma line attached to a 1-PI one loop
amplitude (see Fig. 16). Graph (9) gives

�Γ̃
(1)

J
μ1
a1 J

μ2
a2 J

μ3
a3 J

μ4
a4 ,9

(p1,p2,p3,p4)

= 3

4(4π)2

[
gμ1μ2gμ3μ4δa1a2δa3a4

(
−2 + γE − ln(4π) + ln

(
− s

v2

))

+ gμ1μ3gμ2μ4δa1a3δa2a4

(
−2 + γE − ln(4π) + ln

(
− t

v2

))

+ gμ1μ4gμ2μ3δa1a4δa2a3

(
−2 + γE − ln(4π) + ln

(
− u

v2

))]
. (113)

Graph (10) gives

�Γ̃
(1)

J
μ1
a1 J

μ2
a2 J

μ3
a3 J

μ4
a4 ,10

(p1,p2,p3,p4)

= − 3

4(4π)2

(
gμ1μ2gμ3μ4δa1a2δa3a4 + (1 ↔ 3)

(2 ↔ 4)
+ (1 ↔ 4)

(2 ↔ 3)

)

×
(

−γE + ln(4π) − ln

(
m2

v2

))
. (114)
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Fig. 17 Four currents with two
sigma lines

Graph (12) gives

�Γ̃
(1)

J
μ1
a1 J

μ2
a2 J

μ3
a3 J

μ4
a4 ,12

(p1,p2,p3,p4)

= 1

4(4π)2

(
gμ1μ2gμ3μ4δa1a2δa3a4 + (1 ↔ 3)

(2 ↔ 4)
+ (1 ↔ 4)

(2 ↔ 3)

)

×
(

3

2
− γE + ln(4π) − ln

(
m2

v2

))
. (115)

Graph (13) gives

�Γ̃
(1)

J
μ1
a1 J

μ2
a2 J

μ3
a3 J

μ4
a4 ,13

(p1,p2,p3,p4)

= 3

4(4π)2

(
gμ1μ2gμ3μ4δa1a2δa3a4 + (1 ↔ 3)

(2 ↔ 4)
+ (1 ↔ 4)

(2 ↔ 3)

)

×
(

1

2
− γE + ln(4π) − ln

(
m2

v2

))
. (116)

Finally we consider the connected graphs with two sigma lines attached to a 1-PI ampli-
tude (see Fig. 17). Graph (14) gives

�Γ̃
(1)

J
μ1
a1 J

μ2
a2 J

μ3
a3 J

μ4
a4 ,14

(p1,p2,p3,p4)

= − 3

8(4π)2

[
gμ1μ2gμ3μ4δa1a2δa3a4

(
−2 + γE − ln(4π) + ln

(
− s

v2

))

+ gμ1μ3gμ2μ4δa1a3δa2a4

(
−2 + γE − ln(4π) + ln

(
− t

v2

))

+ gμ1μ4gμ2μ3δa1a4δa2a3

(
−2 + γE − ln(4π) + ln

(
− u

v2

))]
. (117)

We remark that the amplitudes in (109), (113) and (117) cancel among each other. This
is a consequence of the general cancellation mechanism implemented by (52). Notice that
in the case of (109), (113) and (117) this cancellation guarantees the absence of terms con-
taining logs of the momenta in the corrections to the ancestor amplitudes from graphs with
at least one massive line (at the leading order in the large m expansion).

Finally graph (15) gives

�Γ̃
(1)

J
μ1
a1 J

μ2
a2 J

μ3
a3 J

μ4
a4 ,15

(p1,p2,p3,p4)

= 9

8(4π)2

(
gμ1μ2gμ3μ4δa1a2δa3a4 + (1 ↔ 3)

(2 ↔ 4)
+ (1 ↔ 4)

(2 ↔ 3)

)

×
(

−γE + ln(4π) − ln

(
m2

v2

))
. (118)
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Hence we are left with

�Γ̃
(1)

J
μ1
a1 J

μ2
a2 J

μ3
a3 J

μ4
a4

= sa1a2a3a4

12(4π)2
g(μ1μ2gμ3μ4)

(
5

6
− γE + ln(4π) − ln

(
m2

v2

))

+ 1

(4π)2

(
gμ1μ2gμ3μ4δa1a2δa3a4 + (1 ↔ 3)

(2 ↔ 4)
+ (1 ↔ 4)

(2 ↔ 3)

)

×
[

1

4
− γE + ln(4π) − ln

(
m2

v2

)]
. (119)

By considering only the contributions from the 1-PI graphs in Fig. 15 we can evaluate
Γ

(1)

H,J
μ1
a1 J

μ2
a2 J

μ3
a3 J

μ4
a4

:

Γ
(1)

H,J
μ1
a1 J

μ2
a2 J

μ3
a3 J

μ4
a4

= − sa1a2a3a4

12(4π)2
g(μ1μ2gμ3μ4) ln

(
m2

v2

)

+ 3

8(4π)2

(
gμ1μ2gμ3μ4δa1a2δa3a4 + (1 ↔ 3)

(2 ↔ 4)
+ (1 ↔ 4)

(2 ↔ 3)

)
ln

(
m2

v2

)
. (120)

Appendix 5 Nonlinear Sigma Model

The D-dimensional classical action of the nonlinear sigma model in the flat connection
formalism [1] is

Γ
(0)
NL = v2

D

8

∫
dDx(Fμ

a − Jμ
a )2 +

∫
dDxK0φ0. (121)

J a
μ is the background connection and K0 the source of the constraint φ0 of the nonlinear

sigma model

φ2
0 + φ2

j = v2
D. (122)

Γ
(0)
NL obeys the following D-dimensional local functional equation

+1

2

δΓ
(0)
NL

δK0

δΓ
(0)
NL

δφa

+ 1

2
εabcφc

δΓ
(0)
NL

δφb

− 1

2
φaK0

− ∂μ δΓ
(0)
NL

δJ
μ
a

− εabcJ
μ

b

δΓ
(0)
NL

δJ
μ
c

= 0. (123)

We set S0 = Γ
(0)
NL |K0=0. In terms of the background connection J a

μ and of the flat con-
nection

Fμ
a = 2

v2
D

(φ0∂
μφa − ∂μφ0φa + εabc∂

μφbφc) (124)
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the invariant solutions of the linearized functional equation which enter at the one loop level
read [2]

I1 =
∫

dDx[Dμ(F − J )ν]a[Dμ(F − J )ν]a,

I2 =
∫

dDx[Dμ(F − J )μ]a[Dν(F − J )ν]a,

I3 =
∫

dDxεabc[Dμ(F − J )ν]a(Fμ

b − J
μ

b )(F ν
c − J ν

c ),

I4 =
∫

dDx

(
v2

DK0

φ0
− φa

δS0

δφa

)2

, (125)

I5 =
∫

dDx

(
v2

DK0

φ0
− φa

δS0

δφa

)
(F

μ

b − J
μ

b )2,

I6 =
∫

dDx(Fμ
a − Jμ

a )2(F ν
b − J ν

b )2,

I7 =
∫

dDx(Fμ
a − Jμ

a )(F ν
a − J ν

a )(Fbμ − Jbμ)(Fbν − Jbν),

where Dμ denotes the covariant derivative w.r.t Fμa :

Dμ,ab = ∂μδab + εacbFμc. (126)
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